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Abstract. Medical imaging datasets often vary due to differences in ac-
quisition protocols, patient demographics, and imaging devices. These
variations in data distribution, known as domain shift, present a signifi-
cant challenge in adapting imaging analysis models for practical health-
care applications. Most current domain adaptation (DA) approaches aim
either to align the distributions between the source and target domains
or to learn an invariant feature space that generalizes well across all do-
mains. However, both strategies require access to a sufficient number of
examples, though not necessarily annotated, from the test domain during
training. This limitation hinders the widespread deployment of models
in clinical settings, where target domain data may only be accessible in
real time.
In this work, we introduce HyDA, a novel hypernetwork framework that
leverages domain-specific characteristics rather than suppressing them,
enabling dynamic adaptation at inference time. Specifically, HyDA learns
implicit domain representations and uses them to adjust model param-
eters on-the-fly, allowing effective interpolation to unseen domains. We
validate HyDA on two clinically relevant applications—MRI-based brain
age prediction and chest X-ray pathology classification—demonstrating
its ability to generalize across tasks and imaging modalities. Our code is
available at: https://github.com/doronser/hyda.
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1 Introduction

Deep learning has significantly advanced medical image analysis, enabling ac-
curate detection, classification, segmentation, and predictive modeling. How-
ever, for practical deployment in healthcare, models must adapt to variations
in imaging protocols, scanner types, and patient demographics, which lead to
discrepancies between training and test data distributions. This issue, known as
domain shift, remains a major barrier to robust and generalizable model perfor-
mance [10].

Current domain adaptation (DA) techniques generally aim to either align
the distributions between the source and target domains [34,31] or learn a con-
sistent feature space across different domains [20,35,9]. Yet, both approaches
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depend on having enough target domain samples during training, whether an-
notated or not. This dependency poses a challenge for the deployment of models
in clinical settings, where the target data may only be available at the time of
the test. In this work, we propose HyDA, a novel hypernetwork framework that
exploits domain characteristics rather than discarding them, enabling dynamic
adaptation during both training and inference. Specifically, HyDA learns im-
plicit domain representations that are used to generate weights and biases for a
primary network on-the-fly, effectively interpolating to unseen domains. HyDa
is task and modality-agnostic, making it easily integrable into various medical
imaging applications. We showcase its generality and robustness for two clin-
ically relevant tasks—chest X-ray pathology classification and MRI brain age
prediction, demonstrating superior performance over baseline and other domain
adaptation techniques.

2 Related Works

Domain Adaptation Methods. Unsupervised domain adaptation (UDA) ad-
dresses shifting data distributions between source and target domains. One
prominent approach is domain adversarial learning, as exemplified by Domain-
Adversarial Neural Networks (DANN) [8], while MDAN (Multi-Domain Adver-
sarial Network) extends this idea to multiple source domains [38]. Another line
of work focuses on invariant feature learning; for example, Deep CORrelation
ALignment (CORAL) minimizes domain discrepancy by aligning the second-
order statistics of source and target features [30].
Recently, transformer-based methods have gained traction for their self-attention
capabilities. TransDA leverages domain-specific tokens and cross-attention to
align features in an unsupervised manner [36]. Similarly, AdaptFormer [3] and
DAFormer [13] integrate lightweight adapter modules within a Vision Trans-
former framework to modulate representations based on domain cues while main-
taining a shared global representation.

Test-time domain adaptation (TTDA) techniques have a key advantage over
the methods mentioned above: they do not require target data during training
and can adapt models on-the-fly during inference. For example, TENT (Test
Time Entropy Minimization) adjusts model parameters via entropy minimiza-
tion, which works well for multi-class classification tasks with clear output prob-
abilities [31]. MEMO stabilizes adaptation under distribution shifts using aug-
mentations [37]. Although not strictly a TTDA method, SHOT (Source Hy-
pothesis Transfer) adapts to target data without requiring source samples [17]
by relying on pseudo-labeling and entropy minimization. However, the reliance
on entropy may limit their applicability to tasks such as regression or multi-label
classification without modifications.
Hypernetworks. First introduced by Ha et al. [11], hypernetworks are neural
networks that generate weights and biases for primary networks, dynamically
creating a unique set of parameters for each input. Their effectiveness has been
demonstrated in various tasks, including 3D shape reconstruction [18], federated
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Fig. 1: The proposed HyDA framework (left) is composed of a hypernetwork
h (right), a primary network P, and a domain classifier D. The hypernetwork
generates weights and biases to the primary’s head Phead based of the domain
feature vector XD provided by the domain encoder Denc. Other weights in the
system are internal and are learned via back-propagation using a regularized task
dependent LRT , classification LCE or/and multi-similarity LMSim loss functions
as illustrated by the dashed arrows.

learning [29], and medical image segmentation [21]. Aharon et al. [1] showed that
hypernetworks can interpolate by conditioning an image denoising model on ex-
pected noise variance, while Duenias et al. [6] used them to condition medical
image analysis on tabular data. Building on these ideas, we show that hyper-
networks can be applied to medical imaging domain adaptation by generating
weights from domain features, effectively interpolating across the domain space.

3 Method

Our proposed HyDA framework, illustrated in Fig. 1, is composed of a primary
network P that could have any architecture addressing any medical imaging
analysis task; a hypernetwork h and a domain classifier D. Being trained on
datasets from different source domains - the classifier learns implicit domain
features that are mapped by h to sets of weights and biases. These parameters,
termed external parameters are transferred to a subset of layers in P.

Formally, let x ∈ Rd, denote a d−dimensional input image (d ∈ {2, 3}). We
define by Denc and Dhead the domain encoder and domain head, respectively,
which together compose the classifier D.

The classifier is trained to predict the domain of a training image x as follows:

yD = Dhead(Denc(x)) (1)

where yD is the label of a source domain. We assume the availability of at least
two source domains. If deployed separately, the trained domain encoder maps
any input x into a domain feature vector, i.e.,

xD = Denc(x) (2)
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where xD ∈ fD is the domain feature vector of x and fD denotes the domain
feature space. The primary network P which is trained to predict an output yP
for x can be formalized as follows:

yP = Phead(Penc(x), h(Denc(x))), (3)

where, Penc denotes the internal layers in P which are trained through a stan-
dard back propagation process and h(Denc(x)) defines its external domain-aware
weights and biases - generated by the hypernetwork h.

We hypothesize that during inference, feature vectors of a target domain xD,
unseen by the domain encoder before, are well embedded within the domain
feature space, fD, and can be represented as linear combinations of training
domain features. We aim to optimize the hypernetwork such that the metric
capturing inter-domain and intra-domain relationships within fD is preserved in
the external primary network parameters. Once optimally converged, HyDA can
interpolate to new target domains at test time.

3.1 Domain Conditioning Hypernetwork

The hypernetwork maps the domain embedding xD to weights and biases (wh, bh)
for the external primary network layers. Let N,O,B denote the layer’s in-
put, output and batch size, respectively. In a standard linear layer, the output
ψ ∈ R(B,O) is computed as:

ψ = χ ∗ w, w ∈ R(N,O)

where χ ∈ R(B,N) is the input batch and ∗ is matrix multiplication. A hyper-
linear layer instead assigns a unique weight matrix to each batch element:

ψi = χi ∗ wi
h, wi

h ∈ R(N,O) i = 1, . . . , B

The hypernetwork is flexible and can be implemented in various ways. For
simplicity, we use a single linear layer followed by a ReLU activation, which is
sufficient to generate effective domain-aware weights for the primary network.

To ensure stable convergence, we initialize the hypernetwork weights as in
Chang et al. [2] such that the input variance is preserved in the primary network.
We also regularize the weights using the l2 norm.

3.2 Loss Functions

The hypernetwork and the internal primary network layers are trained in an
end-to-end manner with a regularized loss function as follows:

LRT = Ltask + λBP ∥wBP ∥2 + λh ∥wh∥2 (4)

where, RT stands for regularized task, BP for backpropagation, Ltask is a task-
dependent loss (e.g. cross-entropy for classification, MSE for regression), wBP de-
note the union of the hypernetwork’s and the internal primary network’s weights,
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wh are the external primary network weights, generated by the hypernetwork,
and λBP , λh are their corresponding coefficients. The domain classifier is trained
using the following loss:

LD = LCE + αLMSim + λD ∥wD∥2 (5)

where LCE is the cross-entropy loss, LMSim is multi-similarity loss as in Wang
et. al. [33], wD are the domain network’s weights and α, λD are coefficients. The
multi-similarity loss optimizes over hard positive and negative examples. As
domain labels are known during training, these samples can be selected directly.
The supervised CE loss LCE aims to correctly classify the input into source
domains, while the contrastive, multi-similarity loss encourages the separation
of embedded domain feature vectors into different domain-aware clusters. The
multi-similarity loss also supports the hypernetwork training - allowing it to
maintain domain-specific representation of the weights and biases it generates
for the primary network.

4 Experiments and Results

We demonstrate the proposed HyDA framework on two medical imaging anal-
ysis tasks: chest X-ray pathology classification and MRI brain age prediction.
In both experiments, we use a leave-one-out setting to simulate different source
and target domain configurations. Specifically, given N datasets, training is per-
formed on N − 1 domains and testing on the held-out domain, cycling through
all domains.

4.1 Chest X-ray Pathology Classification

We trained our model for multi-label classification on chest X-ray scans from
three publicly available datasets, comparing HyDA to a baseline with no adap-
tation, a UDA method (soft MDAN [38]), and a TTDA method (TENT [31]).
In both cases, the domain classifier was pre-trained for robust initialization.
Data. We use the NIH [32], CheXpert [14], and VinDr [24] datasets, select-
ing five classes—Atelectasis, Cardiomegaly, Consolidation, Effusion, and Pneu-
mothorax—that are common across all three, resulting in a combined dataset of
90, 570 X-ray scans.
Implementation Details. We fine-tuned a DenseNet121 model pre-trained on
ImageNet, replacing its input and output layers to process single-channel im-
ages and output five classes, following prior work [27,4]. The domain classifier
is a simple CNN with four convolution blocks and a linear classification layer,
while the hypernetwork is a multi layer perceptron (MLP) that generates a set
of weights and biases for the primary network (DenseNet). Both baseline and
HyDA models were trained for 150 epochs using the AdamW optimizer (learning
rate: 1e − 3, weight decay: 0.05) with a cosine annealing scheduler (minimum
learning rate: 1e− 6).
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Target
Domain Method

Pathologies (AUC) ↑
Avg. (std)

Atel. Cardio. Cons. Eff. Pneu.

-

Baseline 0.85 0.95 0.86 0.94 0.87 0.89 (0.04)
MDAN 0.86 0.96 0.86 0.94 0.88 0.90 (0.04)
HyDA 0.87 0.97 0.86 0.94 0.89 0.91 (0.04)

NIH

Baseline 0.70 0.81 0.76 0.86 0.77 0.78 (0.06)
MDAN 0.67 0.89 0.76 0.86 0.77 0.79 (0.08)
TENT 0.61 0.70 0.64 0.81 0.67 0.69 (0.07)
HyDA 0.68 0.89 0.75 0.88 0.79 0.80 (0.08)

CheXpert

Baseline 0.81 0.86 0.73 0.87 0.74 0.80 (0.06)
MDAN 0.77 0.76 0.71 0.84 0.72 0.76 (0.05)
TENT 0.76 0.86 0.77 0.89 0.76 0.81 (0.06)
HyDA 0.82 0.85 0.82 0.89 0.74 0.82 (0.05)

VinDr

Baseline 0.60 0.76 0.85 0.88 0.91 0.80 (0.11)
MDAN 0.68 0.82 0.88 0.87 0.89 0.83 (0.08)
TENT 0.51 0.72 0.80 0.74 0.86 0.73 (0.12)
HyDA 0.66 0.87 0.93 0.89 0.92 0.85 (0.10)

Table 1: Chest X-ray classification results measured by AUC. Pathologies ab-
breviations: Atel (Atelectasis), Cardio (Cardiomegaly), Cons (Consolidation),
Eff (Effusion), Pneu (Pneumothorax). Each group compares different models on
the same target domain. Best results in bold.

Results. Table 1 reports the area under curve (AUC) of the chest X-ray ex-
periments. HyDA outperforms the baseline in both fully supervised and leave-
one-out settings. Notably, the improvement correlates with the separability of
domain features that were not seen in training (see Fig. 2); domains with well-
clustered features (CheXpert and VinDr) show larger gains compared to NIH.
Paired t-tests comparing HyDA to the comparison methods show the results are
statistically significant - p-values are 0.0023, 0.0010, and 0.00007 when compar-
ing to baseline, MDAN and TENT respectively — all p-values are below 0.0025.
Ablation Study. Table 2 highlights the contribution of each component in the
proposed loss function to achieve the best possible performance.

4.2 Brain Age Prediction

To further assess our method and demonstrate its task-agnostic nature, we eval-
uated its performance on age prediction from brain MRI scans.
Data. We used 18 brain MRI datasets containing 26,691 scans. The scans were
preprocessed using the workflow in Levakov et. al. [16].
Implementation Details. Our primary network is a 3D CNN comprised of 4
convolution blocks followed by a 4-layered-MLP. The domain classifier follows a
similar architecture, with fewer parameters (refer to our code for further details).
The model was trained using AdamW optimizer with a learning rate of 1e −
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(a) All domains (b) w/o NIH (c) w/o CheXpert (d) w/o VinDr

Fig. 2: t-SNE projections of domain feature in fully supervised and leave-one-out
settings. The plots illustrate the embedding of previously unseen domains in the
learned domain feature space : (a) All domains training with respect to training
(b) w/o NIH (blue) (c) w/o CheXpert (orange) and (d) w/o VinDr (green).

LCE LD
MSim Lh

MSim NIH CheXpert VinDr

✓ 0.72 (0.11) 0.79 (0.05) 0.81 (0.13)
✓ ✓ 0.76 (0.09) 0.81 (0.06) 0.83 (0.10)
✓ ✓ ✓ 0.80 (0.08) 0.82 (0.05) 0.85 (0.10)

Table 2: Ablation study of the loss terms. Each row represents an incremental
combination of loss terms, including domain classifier’s cross-entropy (CE) LCE

and multi-similarity (MSim) LD
MSim loss functions as well as hypernetworks’

MSim loss Lh
MSim. Average AUC results (std in brackets) of the target domain

for each of the three datasets are reported.

4, weight decay of 0.05 and a cosine annealing learning rate scheduler with a
minimum learning rate of 1e− 6 for 150 epochs.
Results. Table 3 presents the brain age prediction results. Notably, HyDA out-
performs the baseline in both supervised and leave-one-out settings. These re-
sults demonstrate HyDA’s ability to learn meaningful domain representations,
interpolate to unseen domains, and adapt the model on-the-fly using domain
features. The interpolation capability is further illustrated in the t-SNE plot
in Fig. 3, where samples from a previously unseen domain are well embedded
among feature vectors from domains used during training. Paired t-tests com-
paring HyDA with the baseline show that, while the supervised setting results
are not statistically significant, the leave-one-out results are significant (p-values
of 0.1122 and 0.0383, respectively).
Ablation Study. We evaluated the robustness of HyDA by testing different
configurations of the primary network’s MLP head, which consists of four lay-
ers—three of which can be external, with their weights generated by the hyper-
network. Table 4 shows that replacing some internal layers with domain-specific
(external) ones improves performance over the baseline, regardless of which lay-
ers are adapted. The best performance is achieved by combining both types of
layers: relying solely on task-specific weights limits generalization to unseen do-
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Model CNP [26] NKI [25] ixi [12] Oasis [22] ABIDE [5] ADNI [15] AIBL [7] PPMI [23] Camcan [28] SLIM [19] Avg. (std)

Fully Supervised (Validation MAE) ↓

Baseline 3.11 3.01 3.54 3.29 2.09 2.80 2.74 4.23 3.35 0.47 2.86 (0.96)
HyDA 2.39 2.92 3.22 3.29 1.74 3.04 2.94 3.94 3.21 0.37 2.71 (0.95)

Leave-One-Out (Test MAE) ↓

Baseline 3.36 3.90 4.41 5.40 3.25 4.31 3.56 4.15 3.50 1.44 3.73 (0.97)
HyDA 2.86 3.44 4.14 5.20 3.16 4.48 3.45 4.24 3.35 1.34 3.57 (1.00)

Table 3: Brain age prediction results in fully supervised (validation MAE) and
leave-one-out (test MAE) settings. Best scores are in bold.

(a) All domains training (b) All domains w/o Camcan

Fig. 3: t-SNE projections of domain feature vectors xD, Camcan examples are
in red. The plots show embedding when samples of all domains (a) or all but
Camcan (b) are available during training.

Layer 1 Layer 2 Layer 3 Average (std)
4.16 (0.26)

✓ 3.99 (0.20)
✓ 3.97 (0.32)

✓ 3.79 (0.21)
✓ ✓ 3.79 (0.35)

✓ ✓ ✓ 4.17 (0.11)
Table 4: Hypernetwork external layer configuration - ablation study. Each con-
figuration was trained on two target domains (NKI, ixi), and results are reported
as mean (std) target domain MAE.

mains, while using only domain-specific weights compromises critical task-related
information.

5 Conclusions

We introduced HyDA, a hypernetwork-based framework that rethinks test-time
domain adaptation in medical imaging by embracing domain variability rather
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than suppressing it. By learning implicit domain representations and dynam-
ically generating model parameters at test time, HyDA tailors predictions for
each input based on its domain characteristics.

Experimental evaluations on chest X-ray pathology classification and MRI
brain age prediction demonstrate that HyDA outperforms traditional domain-
invariant methods and existing test-time adaptation techniques. Its ability to
interpolate between domains, as revealed by t-SNE visualizations, confirms that
leveraging domain-specific cues leads to more robust and generalizable models.
Moreover, HyDA’s task-agnostic design and compatibility with various architec-
tures make it a versatile solution for a wide range of clinical applications. Overall,
HyDA offers a promising pathway toward more reliable and adaptable medical
image analysis, enabling models to seamlessly adjust to real-world variations in
data acquisition without requiring extensive target domain training.
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